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 Describe and provide insight into Sigma:
 What it is about

 How it works

 What it is capable of

 Much of it from perspective of virtual agents

 Mixed presentation, demonstration, and hands on
 Execution but not programming

 Complements what can be found in papers

Goal of this Tutorial Feel free to ask questions at any time

First hands-on tutorial on Sigma

0 1 2 3 4 5 6 7
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 Introduction
 The basics of Sigma

 Hands on

 Sigma as the mind of an agent on a grid

 A sequence of random walks of increasing functionality

 Additional topics

 Rule memory (& mapping to graph), mental imagery, distributed 
vectors, episodic memory, appraisal & attention, Theory of Mind (& 
multiagent systems), and interactive adaptive virtual humans

 Summary

Outline
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 To participate directly in the hands-on portion of this tutorial 
you will need to have LispWorks installed
 If not, you can still watch the demos as we go through them but 

won’t be able to do the same yourself

 There is a free trial version available for download:
 http://www.lispworks.com/downloads/index.html

 It is sufficient for our purposes here, but does have limitations:
 A limited heap size

 A limit to five hours per session

 It is slower

 It may take a while to download, so please start it now
 Further instructions will be forthcoming during hands-on portion

Setup Instructions

WIFI Setup
Ssid: waterfront
User: aamas    pwd: aamas2016

http://www.lispworks.com/downloads/index.html
http://www.lispworks.com/downloads/index.html
http://www.lispworks.com/downloads/index.html
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http://www.lispworks.com/downloads/index.html

LispWorks Personal Edition Download Screen Capture

http://www.lispworks.com/downloads/index.html
http://www.lispworks.com/downloads/index.html
http://www.lispworks.com/downloads/index.html
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Working Memory

Learning

Long-Term Memory

D
e
c
is

io
n

 Model of the fixed structure of a/the mind
 Memory, reasoning, learning, interaction, ...

 Integration across these capabilities

 Supports knowledge and skills above the architecture

Cognitive Architecture

Examples are from Soar, which I co-led for 15 years

UM

USC/ICT – SASOCMU

USC/ISI & UM – IFOR
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Overall Desiderata for the Sigma ( ) Architecture𝚺
 A new breed of cognitive architecture that is

 Grand unified

 Cognitive + key non-cognitive (perceptuomotor, affective, attentive, …)

 Generically cognitive
 Spanning both natural and artificial cognition

 Functionally elegant

 Broadly capable yet simple and theoretically elegant

 “cognitive Newton’s laws”

 Sufficiently efficient

 Fast enough for anticipated applications

 For virtual humans & intelligent agents/robots that can
 Think – Broadly, deeply and robustly cognitive

 Behave – Interactive with their physical and social worlds

 Learn – Adaptive given their interactions and experience

Hybrid: Discrete + Continuous
Mixed: Symbolic + Probabilistic
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Soar 9 (UM)

Modular versus Functionally Elegant

Episodic 
Memory

Semanti
c 

Memory

Procedural 
Memory

Working Memory

Imagery
Memory

Perception Motor

Modular

Episodic 
Memory

Semanti
c 

Memory

Procedural 
Memory

Working Memory

Imagery
Memory

Working Memory

Long-Term Memory

Perception Motor

Functionally
Elegant

Specialization and Combination

Goal: Advancing elegance, depth and breadth
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Approach: Graphical Architecture Hypothesis

Soar 9

Cognitive
Architectures

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Graphical
Models

+

Key to success is blending what has been learned from over three decades 
of independent work in cognitive architectures and graphical models
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 Efficient computation over multivariate functions by leveraging forms of 

independence to decompose them into products of simpler subfunctions
 Bayesian/Markov networks, Markov/conditional random fields, factor graphs

 Solve typically via some form of message passing or sampling

 State of the art performance across symbols, probabilities and signals from 

uniform representation and reasoning algorithm

 (Loopy) belief propagation, forward-backward algorithm, Kalman filters, Viterbi algorithm, 

FFT, turbo decoding, arc-consistency, production match, …

 Can support mixed and hybrid processing

 Several neural network models map directly onto them

Graphical Models

w

y
x

z

u

p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|
x)

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)Σ
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 Bayesian network
 Directed graph

 Only variable nodes

 A function at each node n

 p(n | parentsn)

 Decompose probabilities

 Factor graph
 Undirected graph

 Variable and factor nodes

 A function at each factor node n

 fn(vsn)

 Decompose arbitrary functions

Bayesian Network vs. Factor Graph

w

y
x

z

u

p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|
x)

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)
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 Compute variable marginals (sum-product/integral-product) or mode 
of entire graph (max-product)

 Pass messages on links and process at nodes
 Messages are distributions over link variables (starting w/ evidence)

 At variable nodes messages are combined via pointwise product

 At factor nodes do products, and summarize out unneeded variables:

12
21
32
 ...

y zx

f1 =

0 2 4 6 …
1 3 5 7 …
2 4 6 8 …
    …

f2 =

0 1 2 …
1 2 3 …
2 3 4 …
    …

Summary Product Algorithm

2
3
4
..
.

6
7
8
..
.

[0 0 0 1 0 …] [0 0 1 0 0 …]
“3” “2”

In Sigma, both functions and 
messages are piecewise linear
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 Unified representation for continuous, discrete and symbolic data

 At base have multidimensional continuous functions
 One dimension per variable, with multiple dimensions providing relations
 Approximated as piecewise linear over arrays/tensors of regions

 Discretize domain for discrete distributions (& symbols)

 Booleanize range (and add symbol table) for symbols

    Color(O1, Brown) & Alive(O1, T)

 Dimensions/variables are typed

Piecewise Linear Functions

P(weight | 
concept) Walker Table …

[1,10> .01w .001w …

[10,20> .2-.01w “ …

[20,50> 0
.025-.00

025w …

[50,100
>

“ “ …

O1 Brown Silver White

T 1

0
F 0

P(legs | 
concept) Walker Table …

1 0 0 …

2 0 0 …

3 0 .1 …

4 1 .9 …

Analogous to implementing digital 
circuits by restricting an inherently 

continuous underlying substrate
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1 2 3 40

1 2 3 40

1.3 2.1 2.95 40 2.4

1 2 3 40 walker table dog human

1

(a) Continuous (approximation)

(c) Discrete (center on integer)

(b) Discrete (start on integer)

(d) Symbolic

Piecewise Linear Functions

Unique variables: Distribution over which element of domain is valid (like random variables)
Universal variables: Any or all elements of the domain can be valid (like rule variables)
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SPA in a Naïve Bayes Classifier

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T
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B: Boolean
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D: Discrete
C: Continuous
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A subset of factor nodes 
(and no variable nodes)

Given cues, retrieve/predict object category and missing attributes
E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, Mobile=T, Weight=50

Naïve Bayes classifier

Category

Alive Legs Mobile WeightColor

Hum
an=.9

5, 

Dog
=.9

5
Walker=1, 
Table=.9,
Dog=.87
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The Structure of Sigma

Computer System

Computer
Architecture

Microcode
Architecture

Programs & 
Services

Hardware

Graph ModificationGraph Solution
Graphical Architecture:

Graphical models
Piecewise linear 

functions
Gradient-descent 

learning

Cognitive Architecture:
Predicates
Conditionals
Nested tri-level control

 𝚺 Cognitive System

Cognitive
Architecture

Graphical
Architecture

Knowledge & Skills

Lisp

Memory Access, 
Perception & Reasoning

Input
Decisions, Learning, Affect 

& Attention
Output

Σ
Elaboration Adaptation
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 A (parallel) reactive layer
 Single graph/cognitive cycle

Which acts as the inner loop for

 A (serial/iterative) deliberative layer
 Repeated operator selection & application

Which acts as the inner loop for

 A (recursive) reflective layer
 Impasse-driven meta-level processing

 Maps onto bi-/tri-level models in
 Cognitive Psychology (automatic vs. controlled, System 1 vs. 2, …)

 Robotics (3T, …)

 Emotion modeling

(Soar-like) Nested Tri-Level Control

Tie

No-Change
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 Perceive into perceptual buffer (for perception predicates)
 Ideally/ultimately just raw signal

 Process knowledge (conditionals) to update distributions in WM
 Accomplishes both long-term memory access and basic reasoning

 For both cognitive and sub-cognitive (e.g., perceptual) processing

 Doesn’t make decisions or learn

 Decide by choosing one set of values (where appropriate)

 Latch WM distributions and selections (where appropriate)

 Learn for function parameters (when enabled)

 Update appraisals and their implications (when enabled)

 Execute output commands

Reactive Layer
One Cognitive Cycle

Memory Access, 
Perception & Reasoning

Input
Decisions, Learning, Affect 

& Attention
Output
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Deliberative Layer
The Problem Space Computational Model

Follows single path determined by knowledge
•   Knowledge-intensive or algorithmic behavior
•   Best, probability matching, Boltzmann, …

Doesn’t actually do combinatoric search
•  Requires reflection

Select and apply operators to states
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 Impasses occur for problems in operator selection
 None: No operator acceptable (i.e., none with a positive rating)

 Tie: More than one operator has the same best rating
 And the rating is not 1 (best)

 No-change: An operator remains selected for >1 decision

 Impasses yield subgoals (meta-levels, reflective-levels, …)
 Confusingly, these levels are called states (modeled after Soar)

 The state argument will see in predicates is thus actually for levels

 There are no unique symbols designating distinct states at a level

 Subgoal flushed when impasse goes away
 Or when a change occurs higher in hierarchy

Reflective Layer
Impasses and Subgoaling (Meta-Levels)

Tie

No-Change
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 A starts with a fixed amount of money (3)

 A decides how much (in 0-3) to offer B

 B decides whether or not to accept the offer
 If accepts, each gets resulting amount; else both get 0

 Each has a utility function over money
 E.g., <.1, .4, .7, 1>

Reflection in the Ultimatum Game

E(2)

no-change

E(accept)

no-change

0
1
2
3tie

A

accept
reject2

tie

B

accept

0
1
2
3tie

none

A
1

A
0
1
2
3

E(2)

accept
reject

tie

no-change

2

tie

none

A

B
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 Can full range of capabilities be provided in this manner?

 Can it all be sufficiently efficient for real time behavior?

 What are the functional gains?

 Can the human mind (and brain) be modeled?

Fundamental Questions about Sigma
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 Memory

 Procedural (rule) [ICCM 10]

 Declarative (semantic/episodic) [ICCM 10, CogSci 14]

 Constraint [ICCM 10]

 Distributed vectors [AGI 14a]

 Perceptual [BICA 14a, AGI 15]

 Neural network [AGI 16]

 Problem solving

 Preference based decisions [AGI 11]

 Impasse-driven reflection [AGI 13]

 Decision-theoretic (POMDP) [BICA 11b]

 Theory of Mind [AGI 13, AGI 14b]

 Learning [ICCM 13]

 Concept (supervised/unsupervised)

 Episodic [CogSci 14]

 Reinforcement [AGI 12a, AGI 14b]

 Action/transition models [AGI 12a]

 Models of other agents [AGI 14b]

 Perceptual (including maps in SLAM)

 Efficiency [ICCM 12, BICA 14b]

Overall Progress on Sigma

 Mental imagery [BICA 11a, AGI 12b]

 1-3D continuous imagery buffer
 Object transformation
 Feature & relationship detection

 Perception
 Object recognition (CRFs) [BICA 11b]

 Spoken word recognition (HMMs) [BICA 14a]

 Localization [BICA 11b]

 Natural language
 Word sense disambiguation [ICCM 13]

 Part of speech tagging [ICCM 13]

 Sentence identification [WS 15]

 Dialogue [WS 15]

 Affect [AGI 15]

 Appraisal (expectedness, desirability)
 Attention (perceptual, cognitive)

 Integration
 CRF+Localization+POMDP [BICA 11b]

 Rules+SLAM+RL+ToM+VH [IVA 15, WS 15]

 SentenceID+Dialogue [WS 15]

Winner of Kurzweil Award at AGI 2011 & 2012



HANDS-ON SEGMENT
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 https://bitbucket.org/sigma-development/tutorial/wiki/Home

 The URL for the online tutorial

 Sigma source can be downloaded 

 https://bitbucket.org/sigma-development/tutorial/downloads/sigma38-

tutorial.lisp

 Start up Lispworks, select 'open' & navigate to the location of 

sigma38-tutorial.lisp on your filesystem and double click to open.

 From the top menu select buffers -> compile

 All of the sigma functionality & the tutorial code are now loaded 

into your system

Online Tutorial

https://bitbucket.org/sigma-development/tutorial/wiki/Home
https://bitbucket.org/sigma-development/tutorial/wiki/Home
https://bitbucket.org/sigma-development/tutorial/downloads/sigma38-tutorial.lisp
https://bitbucket.org/sigma-development/tutorial/downloads/sigma38-tutorial.lisp
https://bitbucket.org/sigma-development/tutorial/downloads/sigma38-tutorial.lisp
https://bitbucket.org/sigma-development/tutorial/downloads/sigma38-tutorial.lisp
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 Core data structure is the list (of atoms, lists, numbers, etc.)

 (a b 5 d)

 (5.22 (hello))

 Functional programming

 All activity involves function evaluation

 Function calls are evaluated lists (prefix notation)

 (+ (- 3 2) 5)

 (random-walk-1)

 Function definitions are evaluated lists
 (defun factorial (n)

     (if (= n 1) 1 (* n (factorial (1- n)))))

 Evaluating a list yields a function call unless quoted: ‘(a b)

 Evaluating an atom yields a binding unless quoted: ‘x

Sigma is Programmed in Common Lisp



A SEQUENCE OF 
SIGMA AGENTS

28
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 1D Grid with eight cells 1-7

 Agent can move one cell to left or right, or stay where is

Random Walk on 1D Grid

1 2 3 4 5 6 7
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1. Operators (+ conditionals )

2. Operator selection

3. Internal action execution 

(+ types & predicates)

4. Trials

5. External action execution 

(+ perception & action)

6. Value selection

7. External objects

Pedagogical Sequence

8. Learning (of maps)

9. Simultaneous Localization 

and Mapping (SLAM)

10. Semantic memory (& 

learning)

11. SLAM + semantic memory

12. Action modeling (& templates)

13. Perception modeling

14. Reinforcement learning



1. OPERATORS 
(+CONDITIONALS)

31
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 Actions that can be performed internally or externally
 In 1D random walk: left, right, none

 Selection followed by execution
 Repetition yields deliberative behavior

Operators

1 2 3 4 5 6 7
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 init initializes a Sigma model
 Should be the first function called in a Sigma model

 Here it also specifies the set of operators that may be considered

 Selected frames decision making process
 Here all operators are specified with same default rating of 1

 Default best decision rule selects randomly among highest rated

 (d 1), or (decide 1), runs one cognitive/decision cycle

random-walk-1 (Operators and Conditionals)

(defun random-walk-1()
  (init '(left right none))
  (conditional 'acceptable
     :actions '((selected (operator left))
                (selected (operator right))
                (selected (operator none))))
  (d 1))
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 Structure long-term memory (LTM) and basic reasoning
 Deep blending of traditional rules and probabilistic networks

 Comprise a name, one or more patterns and possibly a function

 Patterns may be conditions and actions, as in a rule

 Or even just actions that are always to be applicable

 Patterns may also be condacts

 Support bidirectional reasoning, as needed with probabilities

 Patterns may include constants and variables

Conditionals

 (conditional 'trans
    :conditions ’((above (id (a)) (value (b)))
                  (above (id (b)) (value (c))))
    :actions '((above (id (a)) (value (c)))))

 (conditional 'acceptable
    :actions '((selected (operator left))
               (selected (operator right))
               (selected (operator none))))

Always make all three 
RW operators available 
for selection
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 Call (pwmb ‘selected) to print operator that is selected

 Prints the working memory function for selected
 The state is the level of reflection at which this operator is selected

 Since no level was specified in conditional, it is selected at all levels

Results of (random-walk-1)

SELECTED
      WM-STATE x WM-OPERATOR:
                    [0:100>
  [LEFT]             0
 [RIGHT]             1
  [NONE]             0



2. OPERATOR 
SELECTION

36
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 Default selection is best.

 Boltzmann (or prob-match) selection allows a true random walk

 * denotes the entire domain of the variable.

random-walk-2 (Operator Selection)

(defun random-walk-2()
  (init '(left right none))
  (operator-selection 'boltzmann)
  (setq post-d '((pwmb 'selected)))

  (conditional 'acceptable
               :actions '((selected (operator *))))

  (d 1)
)



3. INTERNAL ACTION 
EXECUTION 
(+TYPES & PREDICATES)

38
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 Types specify the domain of variables, including: their scope, whether they are 
numeric or symbolic, and whether they are discrete or continuous. 

 Types may be symbolic or numeric (discrete or continuous)
 (new-type 'id :constants '(i1 i2 i3))
 (new-type 'type :constants '(walker table dog human))
 (new-type 'color :constants '(silver brown white))
 (new-type 'i04 :numeric t :discrete t :min 0 :max 5)

 Discrete [0, 5) => 0, 1, 2, 3, 4

 (new-type 'weight :numeric t :min 0 :max 500)
 Continuous [0, 500) => [0, 500-ε]

Types

Symbolic

Discrete Numeric

Continuous Numeric
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 Specify relations among typed arguments
 Defined via a name, typed arguments and other optional attributes
 (predicate 'concept :arguments '((id id) (value type %)))

 Predicates may be open or closed world
 Whether unspecified values are assumed false (0) or unknown (1)
 (predicate 'concept2 :world 'closed :arguments '((id id) (value type !)))

 Arguments may be universal or unique (distribution or selection)
 (predicate 'next :world 'closed :arguments '((id id) (value id )))

Predicates

Pure rules: Closed and universal
Pure probabilities: Open and unique

When both, unique are “function of” universal
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random-walk-3 (Internal World)

(defun random-walk-3()
 …
  (new-type '1D-grid :numeric t :discrete t :min 1 :max 8)
  (predicate 'location :world 'closed :arguments '((x 1D-grid !)))

  …
  (conditional 'move-left
               :conditions '(
                             (selected (operator left))
                             (location (x (value))))
               :actions '((location (x (value -1)))))
  … 
  (evidence '((location (x 4))))

  (d 5)
)

 Mental simulation of the walk



4. TRIALS
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random-walk-4 (Trials)

(defun random-walk-4()
 …
 (setq pre-t '((evidence '((location (x 4)) ))))
 …
 (conditional 'halt-at-location-1
               :conditions '(                          
                             (location (x 1))
                             )
               :actions '(
                          (halt)
                          )             
               )
  …
 (trials 1)
)

 Run experiments



5. EXTERNAL ACTION 
EXECUTION (+  
PERCEPTION & ACTION)

44
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random-walk-5 (External World)

 Define a world external to the model and make the Sigma 
model to interact with this world through perceptions and 
actions. 

 perceive-location and execute-action are two functions 
defined as the interaction interface

 Perception predicates induce a segment of the perceptual buffer
 Input is latched in perceptual buffer until changed

 (perceive ‘(0.8 (location (x 4))))

 The location of the agent in this external world is captured by the 
Lisp variable 1d-grid-location and actions are executed by changing 
the value of this variable.
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random-walk-5 (External World)

(defun random-walk-5()
 …
 (predicate 'location :perception t :arguments '((x 1D-grid %))) 
 …
 (setq perceive-list 

`((perceive-location ,perception-prob ,perception-mass))
)

 (setq action-list `((execute-operator ,action-prob)))
 …
)



6. VALUE SELECTION
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 Choice of best alternative at the cognitive level is computed 
as a side effect of MAX summarization over arriving 
messages
 As MAX is computed, maximal (sub)regions are tracked for argmax

 Choice of expected value involves EV summarization

 Choice by probability matching involves a variant of 
INTEGRAL summarization
 Can also transform function before summarization to yield variations 

such as Boltzmann/softmax selection

Decisions
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random-walk-6 (Value Selection)

(defun random-walk-6()
…
  (predicate 'location :perception t 

:arguments '((x 1D-grid %)))
 
  (predicate 'location-selected :world 'closed 

:arguments '((x 1D-grid !)))
…
  (conditional 'select-location

               :conditions '((location (x (location))))
               :actions '((location-selected (x (location)))))
…
)

 The location-selected predicate is defined as closed-world 
with ! (select best) as the unique symbol



7. EXTERNAL 
OBJECTS

50
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1 2 3 4 5 6 7

random-walk-7 (External Objects)

 Assume there are objects at each grid location
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random-walk-7 (External Objects)

(defun random-walk-7()
 …
 (new-type 'obj-type :constants '(walker table dog human))
 (predicate 'object :perception t :arguments '((object obj-type %)))
 (predicate 'object-perceived :world 'closed 

:arguments ’( (location 1D-grid) 
(object obj-type !)))

 …
 (conditional 'perceived-objects
               :conditions '(
                             (object (object (obj)))
                             (location (x (loc)))
                             )
               :actions '((object-perceived (object (obj)) 

(location (loc))))
               ) 
…
)



BREAK
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SHORT SUMMARY 
(+FUNCTIONS)

54
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 Types specify the domain of variables, including: their scope, whether they are 
numeric or symbolic, and whether they are discrete or continuous. 

 Types may be symbolic or numeric (discrete or continuous)
 (new-type 'id :constants '(i1 i2 i3))
 (new-type 'type :constants '(walker table dog human))
 (new-type 'color :constants '(silver brown white))
 (new-type 'i04 :numeric t :discrete t :min 0 :max 5)

 Discrete [0, 5) => 0, 1, 2, 3, 4

 (new-type 'weight :numeric t :min 0 :max 500)
 Continuous [0, 500) => [0, 500-ε]

Types

Symbolic

Discrete Numeric

Continuous Numeric
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 Specify relations among typed arguments
 Defined via a name, typed arguments and other optional attributes
 (predicate 'concept :arguments '((id id) (value type %)))

 Predicates may be open or closed world
 Whether unspecified values are assumed false (0) or unknown (1)
 (predicate 'concept2 :world 'closed :arguments '((id id) (value type !)))

 Arguments may be universal or unique (distribution or selection)
 (predicate 'next :world 'closed :arguments '((id id) (value id )))

Predicates

Pure rules: Closed and universal
Pure probabilities: Open and unique

When both, unique are “function of” universal
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 Each predicate induces a segment of working memory (WM)
 Closed-world predicates latch their results for later reuse while open-

world predicates only maintain results while supported
 Selection predicates latch a specific choice rather than whole distribution

 Best, probability matching, Boltzmann, expected value, …

 Perception predicates induce a segment of the perceptual buffer

 Input is latched in perceptual buffer until changed

 Predicates may also include an optional (piecewise linear) function
 Long-term memory (LTM) for predicate
(predicate 'concept-color :arguments '((concept type) (color color %))
           :function '((.95 walker silver) (.05 walker brown)
                       (.05 table silver) (.95 table brown)
                       (.05 dog silver) (.7 dog brown) (.25 dog white)
                       (.5 human brown) (.5 human white)))

 With episodic memory, also get LTM for history of predicate’s values

Predicate Memories

:perception t

P(color | concept)
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 Structure long-term memory (LTM) and basic reasoning
 Deep blending of traditional rules and probabilistic networks

 Comprise a name, one or more patterns and possibly a function

 Patterns may be conditions and actions, as in a rule

 Or even just actions that are always to be applicable

 Patterns may also be condacts

 Support bidirectional reasoning, as needed with probabilities

 Patterns may include constants and variables

Conditionals

 (conditional 'trans
    :conditions ’((above (id (a)) (value (b)))
                  (above (id (b)) (value (c))))
    :actions '((above (id (a)) (value (c)))))

 (conditional 'acceptable
    :actions '((selected (operator left))
               (selected (operator right))
               (selected (operator none))))

Always make all three 
RW operators available 
for selection
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 Conditions and actions embody traditional rule semantics

 Conditions: Access information in WM

 Actions: Suggest changes to WM

 Multiple actions for the same predicate must combine in WM
 Traditional parallel rule system uses disjunction (or): A ∨ B
 Sigma uses multiple approaches depending on nature of predicate

 For a universal predicate, uses maximum: Max(A, B)

 For a normalized distribution, uses probabilistic or: P(A ∨ B)
 = P(A) + P(B) – P(AB) ≈  P(A) + P(B) – P(A)P(B)

 Assumes independence since doesn’t have access to P(AB)

 For an unnormalized distribution, uses sum: P(A) + P(B)

Conditionals (Rules)



8. LEARNING (OF MAPS)
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Learning

 Learning occurs in Sigma via a process of gradient descent over 
functions defined in predicates or conditionals 

 For instance, learning a map of objects in the single dimensional 
grid would require defining a function representative of the 
concept being learned
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random-walk-8 (Map Learning)

(defun random-walk-8()
 …
  (learn '(:gd))
 …
  (predicate 'map :arguments ’( (location 1D-grid) 

(object obj-type %))
  :function 1) 

 …
  (conditional 'perceived-objects
               :conditions '(
                             (object (object (obj)))
                             (location (x (loc)))
                             )
               :condacts '(                           
                           (map (object (obj)) (location (loc)))
                           )
  ) 
 …
)



9. SIMULTANEOUS 
LOCALIZATION AND 
MAPPING (SLAM)

63



64

random-walk-8 (Map Learning)

(defun random-walk-8()
 …
(learn '(:gd))
 …
(predicate 'map :arguments '( (location 1D-grid) 

(object obj-type %))
:function 1) 

 …
(conditional 'perceived-objects
               :conditions '(
                             (object (object (obj)))
                             (location (x (loc)))
                             )
               :condacts '(                           
                           (map (object (obj)) (location (loc)))
                           )
               ) 
 …
)
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random-walk-8 (Map Learning)

CORRECT LOCATION : 4
PERCEIVED LOCATION : 5

LOCATION POSTERIOR
(0.19999999: WM-X(1D-GRID)[4]) (0.6: WM-X(1D-GRID)[5]) (0.19999999: WM-X(1D-GRID)[6]) 

OBJECT PERCEIVED
(1: WM-OBJECT(OBJ-TYPE)[TABLE]) 

WM for LOCATION-SELECTED
WM-X:
[1]           [2]           [3]           [4]           [5]           [6]           [7]
 0             0             0             0             1             0             0

MAP: 
WM-LOCATION x WM-OBJECT:
            [1]            [2]         [3]         [4]         [5]         [6]           [7]       
               [WALKER] 0.05167313    0.34530607    0.7832272    0.11975537    0.050506998   
0.11340284    0.79965735
[TABLE]   1.55521E-4    1.55521E-4    0.21646221   0.87993443    0.2564895     0.8417874     0.20002768
[DOG]      0.40140295    0.19412153    1.552944E-4  1.5503877E-4  0.69284845    0.04465457    1.5746542E-4
[HUMAN]    0.5467684     0.46041688    1.552944E-4  1.5503877E-4  1.5503877E-4  1.5503877E-4  1.5746542E-4
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random-walk-9 (SLAM)

(defun random-walk-9()
…
 (conditional 'perceived-objects
               :conditions '(
                             (object (object (obj)))                   
        
                             )
               :condacts '(   
                           (location (x (loc)))
                           (map (object (obj)) (location (loc)))
                           )
               )
 …
)
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random-walk-9 (SLAM)

CORRECT LOCATION : 5
PERCEIVED LOCATION : 4

LOCATION POSTERIOR
(1.0623143E-4: WM-X(1D-GRID)[3]) (0.2195618: WM-X(1D-GRID)[4]) (0.78033197: WM-X(1D-GRID)[5]) 

OBJECT PERCEIVED
(1: WM-OBJECT(OBJ-TYPE)[DOG]) 

WM for LOCATION-SELECTED
WM-X:
[1]           [2]           [3]           [4]           [5]           [6]           [7]
 0             0             0             0             1             0             0

MAP: 
WM-LOCATION x WM-OBJECT:
            [1]           [2]           [3]           [4]           [5]        [6]       [7]
[WALKER] 1.00908E-4   0.1106981     0.8140824   0.02834832   0.06153891 0.3477502 0.9556432
[TABLE] 1.00908E-4   0.039249763   0.114756346 0.72501874   0.13430768   0.6173503  0.044159383
[DOG]      0.9138201    0.34931234    0.071062826 0.2465345    0.804055   0.034801 9.87167E-5
[HUMAN]    0.085978076  0.5007398     9.852217E-5 9.852217E-5  9.852217E-5  9.8619E-5 9.8716686E-5
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 Chen et al. (2011). Fusing symbolic and decision-theoretic 
problem solving + perception in a graphical cognitive 
architecture.  Proceedings of the Second International 
Conference on Biologically Inspired Cognitive Architectures.

 Rosenbloom, P. S., Demski, A., Han, T. & Ustun, V. (2013). 
Learning via gradient descent in Sigma.  Proceedings of the 
12th International Conference on Cognitive Modeling.

 Ustun, V. & Rosenbloom, P. S. (2015).  Towards adaptive, 
interactive virtual humans in Sigma.  Proceedings of the 15th 
International Conference on Intelligent Virtual Agents.

Relevant Publications
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(& LEARNING)
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Semantic Memory (Classifier)

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

4

Dog=1

B: Boolean
S: Symbolic
D: Discrete
C: Continuous

Function

Perception

Join

F=.05, T=.95

S
ilv

e
r=

.0
5
, 
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ro
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=
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,
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0

1
w

Given cues, retrieve/predict object category and missing attributes
E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, Mobile=T, Weight=50

Naïve Bayes classifier

Category

Alive Legs Mobile WeightColor
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 Condacts embody (bidirectional) constraint/probability semantics

 Access WM and suggest changes to it (combining multiplicatively)

 Functions relate/constrain/weight combinations of values of 
specified variables (or are constant if no variables specified)

 Functions traditionally part of conditionals in Sigma, but now 
preferably specified as part of predicates, unless constant

 Was effectively specifying a pseudo-predicate in conditionals

Conditionals (Probabilistic Networks)

 (conditional 'concept-color
               :conditions '((object (state (state)) (id (id))))
               :condacts '((concept (id (id)) (value (concept)))
                           (color (id (id)) (value (color))))
               :function-variable-names '(concept color)
               :function '((.95 walker silver) (.05 walker brown)
                           (.05 table silver) (.95 table brown)
                           (.05 dog silver) (.7 dog brown) (.25 dog white)
                           (.5 human brown) (.5 human white)))

(conditional 'concept-color*join
    :conditions '((object (state (state)) (id (id))))
    :condacts '((concept (id (id)) (value (concept)))
                (color (id (id)) (value (color)))
                (concept-color (concept (concept)) (color (color))))

(predicate 'concept-color :arguments '((concept type) (color color %))
    :function '((.95 walker silver) (.05 walker brown)
                (.05 table silver) (.95 table brown)
                (.05 dog silver) (.7 dog brown) (.25 dog white)
                (.5 human brown) (.5 human white)))

Pattern types and functions can be mixed arbitrarily in conditionals
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Learning at Function Nodes

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

4

Gradient defined by feedback to function node
    Normalize (and subtract out average)
Multiply by learning rate and cap
Add to function, smooth and normalize

Similar to backpropagation 
in NNs, but don’t need a 
separate backprop phase

Local, incremental search 
for optimal weights

Gradient descent

Only function/parameter learning, not structure learning

Naïve Bayes classifier

Category

Alive Legs Mobile WeightColor
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random-walk-10 (Semantic Memory)

(defun random-walk-10()
 …
(new-type 'obj-type :constants '(walker table dog human))
(new-type 'color :constants '(silver brown white))
 …
(predicate 'object:perception t :arguments '((object obj-type %)))
(predicate 'color :perception t :arguments '((value color %)))
 …
(predicate 'object-prior 

:arguments'( (object obj-type %))
:function 1)

(predicate 'object-color 
:arguments’( (object obj-type) 

(color color %)) 
:function 1)

 …
)

 Features used are color, legs, and alive
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random-walk-10 (Semantic Memory)

(defun random-walk-10()
 …
  (conditional 'perceived-objects
          :condacts '(  
                      (object (object (obj)))   
                      (object-prior (object (obj)))
                      ))

  (conditional 'object-color*join
    :condacts '(

(object (object (obj))) 
                   (color (value (color)))
                      (object-color (object (obj)) (color (color)))

))
…
)



11. SLAM + SEMANTIC 
MEMORY
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1 2 3 4 5 6 7

random-walk-11 (SLAM + Semantic Memory)

 Observe features of the object, not the objects themselves
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random-walk-11 (SLAM + Semantic Memory)

(defun random-walk-11()
 …
   (conditional 'perceived-objects
               :condacts '(  
                           (object (object (obj)))   
                           (location (x (loc)))
                           (map (object (obj)) (location (loc)))
                           )
               )
…)

(defun random-walk-10()
 …
  (conditional 'perceived-objects
          :condacts '(  
                      (object (object (obj)))   
                      (object-prior (object (obj)))
                      ))
…)
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 Immersive Naval Officer Training System (INOTS)
 Targets leadership and basic counseling for junior Navy leaders

 Trained over 5000 sailors since 2012

 INOTS “mind” based on two tools
 Statistical query-answering tool (NPCEditor)

 Transition diagram for dialogue management

 Both aspects reimplemented and integrated together in Sigma
 Query answering via semantic memory (reactive)

 Dialogue management by sequences of operators (deliberative)

Integration: Replicating a Virtual Human “Mind”



12. ACTION MODELING 
(& TEMPLATES)
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 From specifications of core state predicates automatically 
generate additional types, predicates and conditionals as 
needed for various forms of learning

 Synchronic prediction
 Map learning in SLAM

 Acoustic function learning in speech HMM

 Diachronic prediction
 Learning action models in RL

 Transition function learning in speech HMM

 Episodic learning

 Reinforcement learning

Template-Based Structure Creation
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Generic single slice trellis with optional action
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location
location

*next
action 

function

perception 
function

perception

Agent model
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random-walk-12 (Action Modeling)

(defun random-walk-12()
 …
  (learn '(:am))   
 …
  (predicate 'location :world 'closed 

:perception t 
:arguments ’( (state state) 

(x 1D-grid !)))
…
)
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Automatically Generated Predicates and Conditionals

(PREDICATE 'LOCATION*NEXT :WORLD 'OPEN :UNIQUE '(X) :PERCEPTION T 
:ARGUMENTS '((STATE STATE) (X 1D-GRID %)))

(PREDICATE 'ACTION-2043 :WORLD 'OPEN :UNIQUE '(X-2)
:ARGUMENTS ’( (X-0 1D-GRID) (OPERATOR-1 OPERATOR) 

(X-2 1D-GRID))
    :FUNCTION 1)

(CONDITIONAL 'LOCATION-PREDICTION
    :CONDITIONS ’( (STATE (STATE (S)))
                  (LOCATION (STATE (S)) (X (X-0)))
                  (SELECTED (STATE (S)) (OPERATOR (OPERATOR-1))))

    :CONDACTS '( (LOCATION*NEXT (STATE (S)) (X (X-2)))
                (ACTION-2101 (X-0 (X-0)) (OPERATOR-1 (OPERATOR-1))

(X-2 (X-2))))
    )



13. PERCEPTION 
MODELING
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random-walk-13 (Action & Perception Modeling)

(defun random-walk-13()
 …
  (learn '(:pm :am))
 …
  (predicate 'location :world 'closed :perception t  

:arguments '( (state state) 
(x 1D-grid !)))

  (predicate 'object :perception t 
:arguments '( (state state) 
(object obj-type %)))

…
)
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Automatically Generated Predicates

(PREDICATE 'LOCATION*NEXT :WORLD 'OPEN :UNIQUE '(X) 
:PERCEPTION T 
:ARGUMENTS '((STATE STATE) (X 1D-GRID %)))

(PREDICATE 'ACTION-2103 :WORLD 'OPEN :UNIQUE '(X-2) 
:ARGUMENTS '( (X-0 1D-GRID) 

(OPERATOR-1 OPERATOR) 
(X-2 1D-GRID))

    :FUNCTION 1)

(PREDICATE 'PERCEPTION-2104 :WORLD 'OPEN :UNIQUE '(OBJECT-1) 
:ARGUMENTS '((OBJECT-1 OBJ-TYPE) (X-0 1D-

GRID))
    :FUNCTION 1)
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Automatically Generated Conditionals

(CONDITIONAL 'LOCATION-PREDICTION
    :CONDITIONS '( (STATE (STATE (S)))
                  (LOCATION (STATE (S)) (X (X-0)))
                  (SELECTED (STATE (S)) (OPERATOR (OPERATOR-1))))

    :CONDACTS '( (LOCATION*NEXT (STATE (S)) (X (X-2)))
                (ACTION-2103 (X-0 (X-0)) 

(OPERATOR-1 (OPERATOR-1)) (X-2 (X-2))))
    )

(CONDITIONAL 'OBJECT-PERCEPTION-PREDICTION
    :CONDITIONS '( (STATE (STATE (S))))

    :CONDACTS '( (OBJECT (STATE (S)) (OBJECT (OBJECT-1)))
                (LOCATION*NEXT (STATE (S)) (X (X-0)))
                (PERCEPTION-2104 (OBJECT-1 (OBJECT-1)) (X-0 (X-0))))
    )



14. REINFORCEMENT 
LEARNING
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0 1 2 3 4 5 6 7

G
0 0 0 0 00 09

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

Example: Reinforcement Learning
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0 1 2 3 4 5 6 7

0

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 1 2 3 4 5 6 7

00

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 1 2 3 4 5 6 7

0 0 0

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 1 2 3 4 5 6 7

0 0 0 9

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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0 9.855.81225

Example: Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 
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 Determine location in corridor

 Map corridor

 Learn to go to goal location in corridor

 Learn to model action effects

Integration: Simulated Robot in 1D Corridor

RL

SLAM

1 2 3 4 5 6 7

 G
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random-walk-14 (Reinforcement Learning)

(defun random-walk-14()
…
  (learn '(:pm :am :rl))
…
  (predicate 'location :world 'closed :perception t 

:arguments '((state state) (x 1D-grid !)))

  (predicate 'object :perception t 
:arguments '((state state) (object obj-type %)))

…
)
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Automatically Generated Predicates (Action & Perception)

(PREDICATE 'LOCATION*NEXT :WORLD 'OPEN :UNIQUE '(X) 
:PERCEPTION T 
:ARGUMENTS '((STATE STATE) (X 1D-GRID %)))

(PREDICATE 'ACTION-2103 :WORLD 'OPEN :UNIQUE '(X-2) 
:ARGUMENTS '( (X-0 1D-GRID) 

(OPERATOR-1 OPERATOR) 
(X-2 1D-GRID))

    :FUNCTION 1)

(PREDICATE 'PERCEPTION-2104 :WORLD 'OPEN :UNIQUE '(OBJECT-1) 
:ARGUMENTS '((OBJECT-1 OBJ-TYPE) (X-0 1D-

GRID))
    :FUNCTION 1)
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Automatically Generated Predicates (RL)

(PREDICATE 'PROJECTED :WORLD 'OPEN :UNIQUE '(VALUE) 
:ARGUMENTS '((LOCATION-X 1D-GRID) (VALUE UTILITY %))

    :FUNCTION 1)

(PREDICATE'PROJECTED*NEXT :WORLD 'OPEN :UNIQUE '(VALUE) 
:ARGUMENTS '((LOCATION-X 1D-GRID) (VALUE UTILITY %))

    :FUNCTION 'PROJECTED)

(PREDICATE 'REWARD :WORLD 'OPEN :UNIQUE '(VALUE) :PERCEPTION T 
:ARGUMENTS '((LOCATION-X 1D-GRID) (VALUE UTILITY %))

    :FUNCTION '((0 * (0 20)) (0.1 * (0 10))))

(PREDICATE 'Q :WORLD 'OPEN :UNIQUE '(VALUE) 
:ARGUMENTS ’((LOCATION-X 1D-GRID) (OPERATOR OPERATOR) 

     (VALUE UTILITY %))
    :FUNCTION 1)
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 Rosenbloom, P. S. (2012). Deconstructing reinforcement 
learning in Sigma.  Proceedings of the 5th Conference on 
Artificial General Intelligence.

 Pynadath, D. V., Rosenbloom, P. S. & Marsella, S. C. (2014).  
Reinforcement learning for adaptive Theory of Mind in the 
Sigma cognitive architecture. Proceedings of the 7th Annual 
Conference on Artificial General Intelligence.

 Ustun, V. & Rosenbloom, P. S. (2015).  Towards adaptive, 
interactive virtual humans in Sigma.  Proceedings of the 15th 
International Conference on Intelligent Virtual Agents.

Relevant Publications
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 Rule memory (& mapping to graphical models)

 Mental imagery

 Distributed vectors (word embeddings)

 Episodic memory

 Appraisal & attention

 Theory of Mind (& multiagent systems)

 Interactive adaptive virtual humans

Additional Topics



RULE MEMORY (& MAPPING 
TO GRAPHICAL MODELS)
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CONDITIONAL Transitive
   Conditions: Next(a,b)
               Next(b,c)
   Actions: Next(a,c)

(type ’ID :constants ‘(I1 I2 I3))

(predicate ‘Next ‘((first ID) (second ID)) :world ‘closed)

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0

1 0

 Procedural if-then Structures

 Just conditions and actions

Procedural Memory (Rules)

WM

Pattern

Join
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I2 I3I1

I3

WM Next(I1,I2)
Next(I2,I3)
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)

Next(b,c)
I2c

b
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I2b
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Join
WMFN

Affine Delta

0 0 0

1 0 0

0 1 0

I2b
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I3

0 0 0
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1
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WMVN

Next(first:b second:c)Ne
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b)

Next(first:a second:c)

CONDITIONAL Transitive
   Conditions: Next(a,b)
               Next(b,c)
   Actions: Next(a,c)

Procedural Memory (Rules)
In More Detail

VAN

VAN

FAN

BF

BF

BM

BM
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 (test-rule-one)

Examining Graphs via (g)
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 Predicates and conditionals compile into portions of factor graph

Compiler (Rules)

WM

Alpha Network

Beta Network

Alpha Memories

Beta Memory

Rule Node

Rete for rule match

C1 & C2 & C3  A1 & A2

WMFNs

WMVNs

Beta Network

Inversion

Filter

Affine Delta

Affine

Alpha Network

conditions

actions
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 Predicates and conditionals compile into portions of factor graph

Compiler (Condacts and Functions)

WM

Alpha Network

Beta Network

Alpha Memories

Beta Memory

Rule Node

Rete for rule match

C1 & C2 & C3  A1 & A2

WMFNs

WMVNs

Beta Network

Inversion

Filter

Affine Delta

Affine

Alpha Network

conditions

actions

Gamma Network (CF)

function

condact

PBs

PFs
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 Rosenbloom, P. S. (2010). Combining procedural and 
declarative knowledge in a graphical architecture.  
Proceedings of the 10th International Conference on 
Cognitive Modeling.

Relevant Publications
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 How is spatial information represented and 
processed in minds?
 Add and delete objects from images

 Aggregate combinations into new objects

 Translate, scale and rotate objects

 Extract implied properties for further reasoning

 In a symbolic architecture either need to
 Represent and reason about images symbolically

 Connect to an imagery component (as in Soar 9)

 In Sigma, use its standard mechanisms
 Continuous, discrete and hybrid representations

 Affine transform nodes that are special purpose 
optimizations of general factor nodes

Imagery Memory (Mental Imagery)
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 Translation: Addition (offset)
 Negative (e.g., y + -3.1 or y − 3.1): Shift to the left

 Positive (e.g., y + 1.5): Shift to the right

 Scaling: Multiplication (coefficient)
 <1 (e.g. ¼ × y): Shrink

 >1 (e.g. 4.37 × y): Enlarge

 -1 (e.g., -1 × y or -y): Reflect

 Requires translation as well to scale around object center

 Rotation (by multiples of 90°): Swap dimensions
 x   ⇄ y

 In general also requires reflections and translations

Affine Transforms

Special purpose optimization of standard 
factor node that operates on 

variables/dimensions & their region 
boundaries

Yields a form of primitive mental arithmetic
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 Offset boundaries of regions along a dimension

 Special purpose optimization of a delta function

How to Slide a Tile

CONDITIONAL Move-Right
   Conditions: (selected state:s operator:o)
               (operator id:o state:s x:x y:y)

             (board state:s x:x y:y tile:t)
             (board state:s x:x+1 y:y tile:0)
 Actions: (board state:s x:x+1 y:y tile:t)
          (board state:s x:x y:y tile:0)

C
R

O
PP

A
D
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Transform a Z Tetromino (via Affine Nodes)

CONDITIONAL Rotate-90-Right
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:4-y y:x)

CONDITIONAL Reflect-Horizontal
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:4-x y:y)

CONDITIONAL Scale-Half-Horizontal
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:x/2+1 y:y)
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CONDITIONAL Left-Edge
   Conditions: (Union x:x y:y)
               (Union – x:x-.0001 y:y)
   Actions: (Left-Edge x:x y:y)

×

Edge Extraction

×

CONDITIONAL Ovelap-0-1
   Conditions: (Image object:0 x:x y:y)
               (image object:1 x:x y:y)
   Actions: (Overlap overlap:0 x:x y:y)

Overlap Detection
 CONDITIONAL Union
    Conditions: (Image object:o x:x y:y)
    Actions: (Composite x:x y:y)

Max

Object Composition

Composition and Extraction

negated condition
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 Rosenbloom, P. S. (2011). Mental imagery in a graphical 
cognitive architecture.  Proceedings of the Second 
International Conference on Biologically Inspired Cognitive 
Architectures.

 Rosenbloom, P. S. (2012). Extending mental imagery in 
Sigma.  Proceedings of the 5th Conference on Artificial 
General Intelligence.

Relevant Publications



DISTRIBUTED VECTORS 
(WORD EMBEDDINGS)
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 Simple yet general approach to integrating large amounts of 
diverse knowledge while yielding natural measures of similarity

 Assign long (e.g., 1000) random vectors to words & concepts

 Evolve “better” vectors from experience with usage
 Co-occurring words, n-grams, phonetic structure, visual features, …

 Degree of similarity is a function of distance in vector space
 For richer language models, simple forms of analogy, …

 Long history in cognitive science (particularly neural networks)
 More recently an important thread in machine learning

 Started to appear in a few cognitive architectures

Distributed Vector Representation or Word Embedding

0.60665036 - 0.5666231 0.41830373 - 0.5400135 0.61649907 0.02903163 0.16481042 …
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Sigma can efficiently and effectively support a 
distributed vector representation that enables implicit 
learning of the meanings of words and concepts from 
large but shallow information resources

Our Hypothesis
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The AGI conferences encourage interdisciplinary 
research based on different understandings of 
intelligence, and exploring different approaches. 

Distributed Vector Representations in Sigma (DVRS) 

ContextOrdering

Context VectorOrdering VectorLexical Vector
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 Vectors are discrete piecewise-constant functions

 Sum-product algorithm manipulates (× & +) vectors

 Gradient-descent evolves lexical representations

DVR in Sigma 

0.60665036 -0.5666231 -0.4183037 0.54001356 -0.6164990 0.02903163 0.16481042
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w

1

0

1

w \ d

0.66 0.14 0.92 0.17 0.14

0.43 0.1 0.17 0.53 0.53

0.01 0.71 0.77 0.08 0.53

0.51 0.54 0.70 0.81 0.94

w \ d

0.66 0.14 0.92 0.17 0.14

0

0.51 0.54 0.70 0.81 0.94

d

1.17 0.68 1.62 0.98 1.08

d

0.46 0.27 0.63 0.38 0.42

Summarization

L2 Normalization

Context Vector

CONDITIONAL Co-occurence
Conditions: Co-occuring-Words(word:w)

Actions: Context-Vector(distributed:d)

Function(w,d): *environmental-vectors*
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Conditionals for Ordering Information

CONDITIONAL Skip-gram
   Conditions: Skip-Gram-Words(word:w position:p)
       Environmental-Vectors(word:w distributed:d)
   Actions: Skip-Gram-Matrix(distributed:d position:p)     
                

 CONDITIONAL Ordering-vector
   Conditions: Skip-Gram-Matrix(distributed:d position:p)
   Actions: Ordering-Vector(distributed:d)
   Function(p,d): *sequence-vectors*
           
         

Ordering Vector
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Conditionals for Meaning/Lexical Vector

CONDITIONAL Context
   Conditions: Context-Vector(distributed:d)

    Current(word:w)
 
   Actions: Meaning-Vector(word:w distributed:d)

CONDITIONAL Ordering
   Conditions: Ordering-Vector(distributed:d)

    Current(word:w)
   Actions: Meaning-Vector(word:w distributed:d)

Lexical Vector

Action CombinationGradient Descent
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Context Ordering Composite

spoken cycle languages

languages society vocabulary

speakers islands dialect

linguistic industry dialects

speak era syntax

language

film
Context Ordering Composite

director movie movie

directed german documentary

starring standard studio

films game films

movie french movies

Sample Results

External 
Simulator
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Assessment of DVRS

 Word2Vec’s Semantic-Syntactic Word Relationship Test Set*
 ”What is the word that is similar to small in the same sense as 

biggest is similar to big?”

 V = (lbiggest - lbig) + lsmall 

 or  “Which word is the most similar to Paris in the way Germany is 
similar to Berlin?”

 V = (lgermany - lberlin) + lparis 

* https://code.google.com/p/word2vec/
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Vector Size Semantic Syntactic Overall

Co-occurrence only 1024 33.7 (31.1) 18.8 (18.6) 25.3 (24.3)

3-Skip-Bigram only 1024 2.7 (2.5) 5.0 (4.9) 4.0 (3.8)

3-Skip-bigram composite 512 29.8 (27.5) 18.5 (18.3) 23.4 (22.4)

3-Skip-bigram composite 1024 32.7 (30.2) 19.2 (18.9) 25.1 (24.0)

3-Skip-bigram composite 1536 34.6 (31.9) 20.1 (19.9) 26.4 (25.3)

3-Skip-bigram composite 2048 34.3 (31.7) 20.1 (19.9) 26.3 (25.2)

Accuracy on Semantic-Syntactic Word Relationship 
Test Set

Training data is enwik8 -> First 108 bytes of the English Wikipedia dump from 2006.
~12.6M words

Word2Vec 
19.3%
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 Ustun, V., Rosenbloom, P. S., Sagae, K. & Demski, A. (2014).  
Distributed vector representations of words in the Sigma 
cognitive architecture. Proceedings of the 7th Annual 
Conference on Artificial General Intelligence.

 Kommers, C., Ustun, V., Demski, A. & Rosenbloom, P. (2015). 
Hierarchical reasoning with distributed vector 
representations.  Proceedings of the the 37th Annual 
Conference of the Cognitive Science Society.

Relevant Publications
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 A core competency in cognition
 Back at least to Tulving (1983) in psychology

 Back at least to Vere & Bickmore (1990) in AI

 Spans ability to
 Store history of what has been experienced

 Autobiographical and temporal

 Selectively retrieve and reuse information from past episodes

 Replay fragments of past history

 Not yet pervasive in cognitive architectures
 But see work in Soar, Icarus, ACT-R, ..

 General relationship to CBR and IBL

Episodic Memory
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 Episode: Distributions over state predicates at decision time

 Three key processes
 Learning a new episode

 Selecting best previous time/episode

 Retrieving features from selected time

 Naïve Bayes classifier over distributions (like SM) but
 Time acts as the category

 MAP/max-product used to retrieve single episode coherently

How Episodic Memory and Learning Works in Sigma

Episo
dic 

Memo
ry

Seman
tic 

Memor
y

Procedur
al 

Memory

Working Memory

Image
ry

Memo
ry

Working Memory

Long-Term Memory

Perception

Semantic Episodic
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 Modeled in Sigma as a discrete numeric type
 Automatically incremented once per cognitive/decision cycle

 Must distinguish past from present
 Episode learning depends on present

 Episode selection depends on comparing past and present

 Episode retrieval depends on past
 With results then being distinguishable from present

 Use related but different predicates & working memory buffers
 Time vs. Time*Episodic, Concept vs. Concept*Episodic, …

 Use one conditional per episodic process per feature
 Appropriately considering past vs. present as necessary

 Tying functions together to share what is learned

 Episodic predicates and conditionals generated automatically 
from state predicates such as Legs

Time as a Category

0 1 2 3 4 5 6 7

…

Conditional Legs-Time*Retrieve
  Conditions: Time*Episodic(value:t)
  Condacts: Legs*Episodic(value:l)
  Function(t,l): Legs-Time*Learn
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 Category prior – Time*Episodic – for episodic classifier
 Learning at each cycle (w/ normalization) yields exponential “decay”

 Episodic selection automatically provides feedback to adjust
 Implicitly takes into consideration frequency and recency

Time as a Function

Conditional Legs-Time*Select
  Conditions: Legs(value:l)
  Condacts: Time*Episodic(value:t)
  Function(t,l): Legs-Time*Learn

Conditional Time*Access
  Condacts: Time*Episodic(value:t)
  Function(t): Time*Learn

Conditional Time*Learn
  Condacts: Time(value:t)
  Function(t): Time*Learn

Mimics base-level activation
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 Trades off partial match across 
multiple cues with temporal prior

 Retrieves all features from single 
best episode when they exist

 Can replay a sequence deliberately

 Works for more complexly 
structured tasks too

Results

1 2 3-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

T5
T6
T7
T8
T9
T10
T11
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+: Piecewise-linear functions track only changes in memories

–: Reprocess entire episodic memory every cycle
 A function is reprocessed in its entirety if any region in it changes

 Implies need for some form of incremental message processing

Efficiency

Time (msec) per cycle over trials
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 Rosenbloom, P. S. (2010). Combining procedural and 
declarative knowledge in a graphical architecture.  
Proceedings of the 10th International Conference on 
Cognitive Modeling.

 Rosenblooom, P. S. (2014). Deconstructing episodic memory 
and learning in Sigma. Proceedings of the 36th Annual 
Conference of the Cognitive Science Society.

Relevant Publications



APPRAISAL & ATTENTION
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 Initial exploration motivated by combination of:
 The theoretical desiderata of grand unification and generic cognition

 The practical goal of building useful virtual humans

 The hypothesis that emotion is critical for surviving and thriving in 
complex physical and social environments
 Part of the wisdom of evolution

 Largely non-voluntary and immutable
 Likely a significant architectural component

 But also affected by knowledge and skills

 Focusing initially on architectural grounding

Emotions in Sigma

USC/ICT
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Architecturally Grounded Emotional Processing

Emotional
State

Appra
is

al

M
odulation

Architecture

Expectedness
Desirability

Attention
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 Typically considered first phase of emotion processing

 Sense emotionally relevant state of system

 Architectural proprioception at the lowest level

 Many different theories with different sets of appraisals

 E.g., EMA includes relevance, desirability, likelihood, expectedness, 
causal attribution, controllability, and changeability (Gratch & 
Marsella)

 Initial work in Sigma focuses on

 Expectedness: Extent an event is predicted by past knowledge

 Desirability: Extent an event facilitates what is wanted

Appraisal
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 Bayesian Theory of Surprise (Itti)
 Surprise is difference between prior and posterior distributions

 Adaptation of distributions is by Bayesian belief updating

 Comparison of distributions is by KL divergence

 Surprise (i.e., unexpectedness) in Sigma
 Adaptation of distributions is by gradient-descent learning

 Comparison of distributions is by Hellinger distance

 Can cope with 0s in P(M) and is symmetric, so provides a metric

(Un)Expectedness

D = Data
M = Model

G Y B R

Y G B R

R R R R

B B B B

.0283 .0283 .0287 .0283

.0283 .0283 .0283 .0283

.5739 .0287 .0287 .0287

Surprise map

Visual Image:

G
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 Relationship of current state to goal
 Difference: Hellinger difference between the two distributions

 Progress/similarity: Bhattacharya coefficient between the distributions

 Inner portion of computation of Hellinger distance

Desirability

G Y B R

Y G B R

R R R R

G B B B

Visual field

Y

Goal

0 .5 0

.5 0 0

0 0 0

Progress Map

.07 0 .07

0 .07 .07

.07 .07 .07

Difference Map

1 2 3

8 4

7 6 5

1 2 3

8 4 5

7 6

.125 .125 .125

.125 0 0

.125 0 0

0 0 0

0 0 .125

0 .125 .125

State Goal Progress Map Difference Map

Eight Puzzle:

Visual Search:
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 Effective allocation of limited resources
 At all (three) layers of control

 Reactive: Perceptual and low-level cognitive attention

 Deliberative: Control of operator/action selection

 Reflective: Focus of metacognition

 Bottom up: Data driven, based on unexpectedness

 Top down:  Goal driven, based on desirability

Attention

G Y B R

Y G B R

R R R R

B B B B

G Y B R

Y G B R

R R R R

G B B B

.0283 .0283 .0287 .0283

.0283 .0283 .0283 .0283

.5739 .0287 .0287 .0287

Initial field Changed field Surprise map

Y

Goal

0 .5 0

.5 0 0

0 0 0

Progress Map

.014 .261 .015 .014

.261 .014 .015 .014

.014 .014 .014 .014

.291 .015 .015 .015

Attention map

G Y B,R

Y G B,R

R R R

G B B

Abstracted Message from Memory

Reduced one 
message from 160K 
regions down to 12
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 Rosenbloom, P. S., Gratch, J. & Ustun, V. (2015).  Towards 
emotion in Sigma: From appraisal to attention.  Proceedings 
of the 8th Conference on Artificial General Intelligence.

Relevant Publications



THEORY OF MIND
(& MULTIAGENT SYSTEMS)
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 ToM models the minds of others, to enable for example:

 Understanding multiagent situations

 Participating in social interactions

 ToM approach based on PsychSim (Marsella & Pynadath)

 Decision theoretic problem solving based on POMDPs

 Recursive agent modeling

 Questions to be answered

 Can Sigma elegantly extend to comparable ToM?

 What are the benefits for ToM?

 What new phenomena emerge from this combination?

Theory of Mind (ToM) in Sigma
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 Core idea: Add agent argument to predicates
 E.g., Selected(agent, operator, state)

 A discrete dimension, but may be numeric or symbolic

 Details
 Agent argument added to architectural predicates: Selected, Impasse

 Directly yielded an agent-specific decision procedure, but needed to further 
modify impasse detection and removal to be agent-specific

 When graph is defined, specify # of agents or list of agent names

 Could instead have defined a new graph for each agent, but 
this approach can enable sharing across agents

Multiagent Sigma

agent

state

op
er
at
or
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One-Shot, Two-Person Games

 Two players

 Played only once (not repeated)
 So do not need to look beyond current decision

 Symmetric: Players have same payoff matrix

 Asymmetric: Players have distinct payoff matrices

 Socially preferred outcome: optimum in some sense

 Nash equilibrium: No player can increase their payoff by 
changing their choice if others stay fixed
 Sigma is finding the best Nash equilibrium

Prisoner’s 
Dilemma

Cooperat
e

Defect

Cooperate .3 .1(,.4)

Defect .4(,.1) .2A

B

A Rewards Cooperat
e

Defect

Cooperate .1 .2

Defect .3 .1

B Rewards Cooperat
e

Defect

Cooperate .1 .1

Defect .4 .4
A

B

A

B
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Symmetric, One-Shot, Two-Person Games

CONDITIONAL Payoff-A-A CONDITIONAL Payoff-B-B
   Conditions: Choice(A,B,op-b)    Conditions: Choice(B,A,op-a) [B’s model of A]
   Actions:    Choice(A,A,op-a)    Actions:    Choice(B,B,op-b) [B’s model of 
B]
   Function:   payoff(op-a,op-b)    Function:   payoff(op-b,op-a)

CONDITIONAL Payoff-A-B CONDITIONAL Payoff-B-A
   Conditions: Choice(A,A,op-a)    Conditions: Choice(B,B,op-b)
   Actions:    Choice(A,B,op-b)    Actions:    Choice(B,A,op-a)
   Function:   payoff(op-b,op-a)    Function:   payoff(op-a,op-b)

CONDITIONAL Select-Own-Op
       Conditions: Choice(ag,ag,op)
       Actions:    Selected(ag,op)

Prisoner’s 
Dilemma

Cooperat
e

Defect A
Result

B
Result

Cooperate .3 .1 .43 .43

Defect .4 .2 .57 .57

Stag
Hunt

Cooperat
e

Defect A
Result

B
Result

Cooperate .25 0 .54 .54

Defect .1 .1 .46 .46

602 Messages 962 Messages

Agent A Agent B

Other

C
ho

os
in

g

Other

C
ho

os
in

g
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Graph Structure

CONDITIONAL Payoff-A-A
   Conditions: Choice(A,B,op-b)
   Actions:    Choice(A,A,op-a)
   Function:   payoff(op-a,op-b)

Select BB BA

PAB

PBA

AA AB

PBA

PAB

Select

Nominal

Agent A

Agent B

ConditionAction

Function

Select **

PBA

PAB

PAB

PBA

PO
R

Actual (Abstracted)

All one predicate

Condition
Action

Function
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Asymmetric, One-Shot, Two-Person Games
CONDITIONAL Payoff-A-A CONDITIONAL Payoff-B-B
   Conditions: Choice(A,B,op-b)    Conditions: Choice(B,A,op-a)
   Actions:    Choice(A,A,op-a)    Actions:    Choice(B,B,op-b)
   Function:   payoff(A,op-a,op-b)   Function:   payoff(B,op-b,op-a)

CONDITIONAL Payoff-A-B CONDITIONAL Payoff-B-A
   Conditions: Choice(A,A,op-a)    Conditions: Choice(B,B,op-b)
               Model(m)                Model(m)
   Actions:    Choice(A,B,op-b)    Actions:    Choice(B,A,op-a)
   Function:   payoff(m,op-b,op-a)   Function:   payoff(m,op-a,op-b)

  CONDITIONAL Select-Own-Op
        Conditions: Choice(ag,ag,op)
        Actions:    Selected(ag,op)

A Rewards Cooperat
e

Defect

Cooperate .1 .2

Defect .3 .1

B Rewards Cooperat
e

Defect

Cooperate .1 .1

Defect .4 .4
374 Messages 636 Messages

Correct
Other

A
Result

B
Result

Cooperate .51 .29

Defect .49 .71

Other as
Self

A
Result

B
Result

Cooperate .47 .29

Defect .53 .71

C
ho

os
in

g

C
ho

os
in

g

A

B

A

B
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 Players (A, B) alternate moves
 E.g., Ultimatum, centipede and negotiation

 Decision-theoretic approach with softmax combination
 Use expected value at each level of search

 Action Ps assumed exponential in their utilities (à la Boltzmann)

 There may be many Nash equilibria

 Instead seek stricter concept of subgame perfection
 Overall strategy is a Nash equilibrium over any subgame

 Key result: Games solvable in two modes:
 Automatic/reactive/system-1

 Controlled/deliberate/system-2

Both modes well documented in humans for general processing

Combination not found previously in ToM models

Sequential Games
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 A starts with a fixed amount of money (3)

 A decides how much (in 0-3) to offer B

 B decides whether or not to accept the offer
 If B accepts, each gets the resulting amount

 If B rejects, both get 0

 Each has a utility function over money
 E.g., <.1, .4, .7, 1>

The Ultimatum Game
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 A trellis (factor) graph in LTM with one stage per move
 Focus on backwards messages from reward(s)

Automatic/Reactive Approach

TA TBaccept moneyoffer

exp

CONDITIONAL Transition-A
  Conditions: Money(agent:A quantity:moneya)
              Accept-E(offer:offer acceptance:choice)
  Condacts: Offer(agent:A quantity:offer)
  Function(choice,offer,moneya): 1<T,0,3>, 1<T,1,2>, 1<T,2,1>,
                                 1<T,3,0>, 1<F,*,0>

 
CONDITIONAL Transition-B
  Conditions: Money(agent:B quantity:moneyb)
  Condacts: Accept(offer:offer acceptance:choice)
  Function(choice,offer,moneyb): 1<T,0,0>, 1<T,1,1>, 1<T,2,2>,
                                 1<T,3,3>, 1<F,*,0>

CONDITIONAL Reward
  Condacts: Money(agent:agent quantity:money)
  Function(agent,money): .1<*,0>, .4<*,1>,
                         .7<*,2>, 1<*,3>

reward
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 Decision-theoretic problem-space search across metalevels
 Very Soar-like, but with softmax combination

 Depends on summary product and Sigma’s mixed aspect

 Corresponds to PsychSim’s online reasoning

Controlled/Deliberate(Reflective) Approach

E(2)

no-change

E(accept)

no-change

0
1
2
3tie

A

accept
reject

2

tie

B

accept

0
1
2
3tie

none

A
1

A
0
1
2
3

E(2)

accept
reject

tie

no-change

2

tie

none

A

B
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 Automatic version (5 conditionals)
 A’s normalized distribution over offers: <.315, .399, .229, .057>

 1 decision (94 messages) and .02 s (on a MacBook Air)

 Controlled version (19 conditionals)
 A’s normalized distribution over offers: <.314, .400, .229, .057>

 72 decisions (868 messages/decision) and 126.69 s

 Same result, with distinct computational properties
 Automatic is fast and occurs in parallel with other memory processing, but is not 

(easily) penetrable by new bits of other knowledge

 Controlled is slow, sequential, but can (easily) integrate new knowledge

 Distinction also maps onto expert versus novice behavior in general

Raises possibility of a generalization of Soar’s chunking mechanism

 Compile/learn automatic trellises from controlled problem solving

 Finer grained, mixed(/hybrid) learning mechanism

Comments on the Ultimatum Game

Speed Ratio >6000

Distributions Comparable
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 Two agents, A and B
 A learns
 B does not

 Negotiating over an allocation of fruit: apples, oranges
 Alternate offers to modify allocation on table
 Each can accept current allocation, ending negotiation
 Each has own reward function that depends on final allocation

A Negotiation Domain
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 Four distinct multiagent reinforcement learning models

 Without explicitly modeling other agent

 Other agent effectively treated as part of environment

 With a stationary policy model of other agent

 Learned from experience with other agent’s actions

 With a set of possible reward functions for other agent

 Learns to determine which is more likely

 By inverse reinforcement learning (IRL) of other agent’s reward

 Learned from experience with other agent’s actions

 But inverts processing to learn other agent’s reward function rather 
than directly using it to learn other agent’s policy

Multiagent Learning in Negotiation Domain
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 Ran all four versions of A against two versions of B
 Cooperative vs. Competitive
 Switched B’s policy after 1000 decision cycles

 All four multiagent RL methods converge to (roughly) optimal
 All four Q functions are capable of representing the optimal policy
 It thus follows a stationary policy, with some noise

Results

Model of B None Stationary 
Policy

Reward 
Subset

IRL

R-A (coop. B) 7.11 7.13 7.12 7.17

R-A (-> comp.) 5.82 5.80 5.85 5.82

R-A (comp. B) 5.88 5.88 5.83 5.85

R-A (-> coop.) 7.00 6.96 7.08 6.99
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 Pynadath, D. V., Rosenbloom, P. S., Marsella, S. C. & Li, L. 
(2013). Modeling two-player games in the Sigma graphical 
cognitive architecture.  Proceedings of the 6th Conference on 
Artificial General Intelligence.

 Pynadath, D. V., Rosenbloom, P. S. & Marsella, S. C. (2014).  
Reinforcement learning for adaptive Theory of Mind in the 
Sigma cognitive architecture. Proceedings of the 7th Annual 
Conference on Artificial General Intelligence.

Relevant Publications



INTERACTIVE, ADAPTIVE 
VIRTUAL HUMANS
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Interactive, Adaptive Virtual Humans

 Control behavior of SmartBody VH(s) in a retail store scenario
 A civilian instance of a physical security system

 Rule-based, probabilistic and social reasoning (ToM)

 Simultaneous localization and mapping (SLAM)

 Multiagent reinforcement learning (RL)

 [Appraisal+attention-based control]
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Simultaneous Localization and Mapping (SLAM)

No Map Map
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Multiagent Reinforcement Learning (RL)

No Model Model
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 Ustun, V. & Rosenbloom, P. S. (2015).  Towards adaptive, 
interactive virtual humans in Sigma.  Proceedings of the 15th 
International Conference on Intelligent Virtual Agents.

 Ustun, V., Rosenbloom, P. S., Kim, J. & Li, L. (2015).  Building 
high fidelity human behavior models in the Sigma cognitive 
architecture.  Proceedings of the 2015 Winter Simulation 
Conference.

Relevant Publications
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 Initializing

 System: init

 Operators: init-operator

 Programming

 Type: new-type

 Predicate: predicate

 Conditional: conditional

 Input

 Evidence: evidence

 Perception: perceive

 Executing

 Messages: r

 Decisions: d

 Trials: t

Basic User Functions

 Printing

 Types: pts

 Predicates: pps, ppfs

 Conditionals: pcs, pcfs

 Functions: pplm, parray, ps

 Working memory: pwm , ppwm, pwmb

 Graph: g

 Debugging

 Recompute message: debug-message

 Print pattern matches: ppm

 Learning: learn
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 Scaling up memory, reasoning and learning

 Continuous speech understanding, and its integration with 

language and cognition

 Theory of Mind

 Emotion/affect and its relationship to the architecture

 Distributed vectors/semantics (i.e., word embeddings)

 (Deep) neural networks

 A generalized skill acquisition mechanism (chunking)

 A new level below the graphical architectural

 Exploiting parallelism and GPUs for efficiency

 Interactive, adaptive, intelligent, emotional virtual humans

Current and Near Future Topics
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Closed vs. open world functions

Universal vs. unique variables

Discrete vs. continuous variables

Boolean vs. numeric function values

Uni- vs. bi-directional links

Max vs. sum summarization

Long- vs. short-term memory

Product vs. affine factors

0

x+.3y

0

1

.5y

6x

x-y

1

Piecewise Continuous Functions

Rule memory Preference-based 
decisions
Episodic memory POMDP-based decisions
Semantic memory Localization
Mental imagery …
Edge detectors

➤
➤
➤
➤
➤

➤
➤

➤

Broad Set of Capabilities from Space of Variations
Highlighting Functional Elegance and Grand Unification

 Knowledge above architecture also involved
– Conditionals and predicates that are compiled into subgraphsf1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Factor graphs w/ Summary Product
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